NOAA Global Systems Laboratory

Towards the Grand Challenge: Prediction Across Scales

Curtis Alexander
Chief, Assimilation and Verification Innovation Division

Ravan Ahmadov, Stan Benjamin, Ligia Bernardet, Mark Govett, Georg Grell, Joseph Olson, Steve Weygandt

What GSL Improvements to NWP Look Like:

Ongoing Improvements in RAP Forecasts

- •Annual average 9-h upper-air RMS error
- Rawinsonde verification on RAP domain
- •RAP implementations indicated at top
- Errors computed for GSL real-time RAP, some year-to-year variability
- Reduced errors for all three variables
- Error reduction for 10 year period shown
- Increasing role of global model partial cycling to gain further error reductions

New Capabilities in the Most Recent HRRR

2020

Reality

2018 HRRR v3 3-km

2020

HRRR v4 3-km

Reality

Improved cloud / ceiling forecast capability

Benefits: Aviation users, NWS and other users

Smoke prediction capability

Benefits: Many users including NWS, state and local entities, etc.

GSL: Key Role in UFS Regional Development

We are

here

Rapid Refresh Forecast System (RRFS)

SUFS

- Consolidation of all regional models
- 3-km ensemble data assimilation with JEDI (HRRRDAS is prototype)
- 3-km ensemble forecasts (HRRRE is prototype)
- GSL: key research for many RRFS capabilities (hourly cycling, radar / lightning DA, cloud analysis, use of GOES and DBnet data, smoke)

RRFS large 3-km domain shown in white

Regional development and implementation schedule

GSL: Key Role in UFS Global Development

We are

here

Contributions to global model systems (GFS, GEFS)

- GEFS member with GOCART aerosol package (GEFSv12)
- Common Community Physics Package for different schemes (CCPP)
- Development of in-line aerosol and chemistry modules for UFS
- Development of candidate scale-aware physics suites for UFS
- Development toward improved sub-seasonal capability for UFS

Saharan dust from GEFS-aerosol member

Global development and implementation Schedule

GSL Grand Scientific Challenge

Provide actionable environmental information through the research and development of global storm-scale prediction and innovative decision support capabilities to serve society.

→ Predict Earth-system seamlessly across space and time scales

Rapidly-updating global DA
Strongly-coupled data assimilation
Multi-scale ensemble-based analysis
Contribution to community-based JEDI

Fully coupled earth system model
Scale-aware physical parameterizations
Representation of uncertainty
Community-based CCPP and UFS

Advanced technologies (AI, ML) for computational efficiency in advancing DA/modeling Explore exascale computing challenges to manage O(10⁶) obs and O(10⁷⁻⁸) gridpoints Research-grade model system with complex physics/chem for process understanding Develop non-Gaussian analysis techniques like particle filtering for non-linear problems

Scales of Prediction Systems

A Global Rapidly Updating Storm-Scale Model

Effective DA using surface (and other) observations including coupled data assimilation

RAP/HRRR 1-way coupled DA Soil Adjustment

From soil observations (i.e. SMAP)

temp/moisture

Atmos Temp Increment (K)

Soil Temp Increment (K)

→Cross-covariances between atmosphere and land via JEDI Ensemble Kalman Filter (EnKF)

A Global Rapidly Updating Storm-Scale Model

Global storm-scale (3 km) forecasts with scale-aware physics suite:

- SW/LW Radiation: RRTMG
- Microphysics: Thompson
- Boundary Layer: MYNN
- Surface Layer: GFS
- Land Surface Model: Noah

00 UTC 29 Aug 2019 1 km AGL Simulated Radar Reflectivity 0-96 hr 3 km Forecast

96 hr (4 day) global 3 km fcst 13,068 processors (363 nodes) 6 hrs of wall clock time per 24 hr fcst

Spatial Scales of Varying Scheme Behavior

Evaluation of QPF biases with finer orographic detail (English et al. 2021)

Improved timing of SFO fog burnoff for airport operations

Convection impacts including more accurate initiation and system evolution at 1 km

SLW
Improved
county-scale
location of
SLW from
1-km 65-level
HRRR run

In-flight icing potential from increased supercooled liquid water (SLW)/banding at 1 km

Future Direction Earth System Predictions

- Now (0-2 years)
 - Complete evolution to FV3LAM, JEDI and CCPP
 - Develop synergistic deterministic and ensemble CAM
 - Develop storm-scale 3D analysis-of-record and uncertainty
- Now and Next (0-5 years)
 - Research with very high-resolution LAM (≤ 1 km grid) for UAS
 - Develop global 13 km rapid refresh (hourly-cycled DA)
 - Develop global high-resolution (3 km) rapid refresh forecasts
- Now, Next and Later (0-10+ years)
 - Research into complex physical process understandings
 - Develop towards a global high-resolution ensemble GEFS/GFSv20?
 - Grand challenge: Provide actionable environmental information through the research and development of global storm-scale prediction and innovative decision support capabilities to serve society.

HAFSv1

RRFSv1 FY23

RTMA3Dv1 FY24

GFSv17 • FY24

GFSv18? • FY26?

FY30?