NOAA Global Systems Laboratory

Earth-System Prediction: GSL History and The Scientific Method Applied by NOAA Research

Stan Benjamin
Senior Scientist for Advanced Modeling Systems

NOAA's mission: Science, Service, Stewardship

→ Hypotheses for earth-system research to improve prediction

Our responsibility across NOAA Research and in Global Systems Laboratory

- 1974, 2011 US tornado outbreaks
- 1976 Big Thompson, CO flood
- 1980s poor aviation forecasts
- 2005-2015 –lake-effect snow events
- 2013-2020 heavy rainfall flood events (e.g., CO, Harvey, WV)
- 2012 Mid-Atlantic derecho
- 2015-2020 significant US smoke
- 2010-2021 increased use of renewable energy wind and solar

GSL's Historical Impact on US NWP

- Rapidly updating models
 - First hourly updated model (RUC), first hourly updated CAM-scale model (HRRR)
- New observations to initialize models
 - First assimilation of radar reflectivity (2008), commercial aircraft (1994), GPS-met
 - First assimilation of cloud data (METAR, satellite)
- Far higher resolution
 - Ex: MRMS radar availability →quick GSL radar DA and testing HRRR
- Integrated model/DA development
 - Leading physics development, integrated PBL/cloud/cumulus/land-snow suite
- Extending from weather to earth system
 - Coupling to land/snow, aerosols, lakes. First land cycling, HRRR-smoke, GEFS-Aerosols
- Community engagement development for WRF, GSI, UFS, CCPP

2015 Recommendations for GSL on NWP

- Identify core competencies
 - High-resolution earth-system modeling,
 - High-resolution DA
 - Community-enabling role, e.g., CCPP, DTC, UFS
- Develop a convection-permitting ensemble
 - HRRR Ensemble
- Contribute to NGGPS (now UFS)
- Prioritize GSL NWP via user needs
 - Energy, severe weather, aviation
- Collaborate with National Water Center
 - HRRR = near-term QPF for National Water Model, project for cycling with NWM

GSL Overview on Earth System Prediction

Our upcoming GSL modeling story

- Modeling
- Data assimilation
- Improvements to prediction across scales
- Community engagement

NOAA Global Systems Laboratory

Earth System Prediction: Modeling to improve the Prediction of Weather, Air Quality, and Climate

Georg Grell

Division Chief, Earth Prediction Advancement Division

Overview of Activities in Modeling

Advance understanding and modeling of the environment

Improve operational forecasting of weather and air quality on all scales

Physics and Chemistry Development

- Boundary layer
- GWD drag
- Convection
- Land surface
- Atmospheric composition
- Scale awareness

Developmental Testbed Center (DTC)

- Infrastructure for development of parameterizations
- Assessment of physics innovations
- Hierarchical tests

Inline coupling

- SubX FIM
- WRF-Chem
- RAP-Chem
- HRRR-Smoke
- UFS
- Chemical data assimilation

Coupling with tools

- GEFS-aerosols (ESMF)
- FV3-Chem with
 CCPP
- FV3-CMAQ
 and RRFS aerosols

Collaborations with OAR labs (CSL, ARL, PSL, GLERL), NWS, NCAR, DOE, national and international community

Overview of Activities in Modeling

Real Time applications for weather and air quality

- Weather forecast and dispersion applications (RAP/HRRR/HRRR-Smoke)
- Aerosol and chemistry modules in global models (GEFS-aerosols)
- Air quality forecasting (RAP-Chem, FV3-CMAQ)
- Evaluating different physics options (GSL suite in RAP, HRRR, and FV3)

Speakers in This Talk

Physics: Joseph Olson

Atmospheric Composition: Ravan Ahmadov

Model coupling: Shan Sun

NOAA Global Systems Laboratory

Physics

Joseph Olson Model Physics Branch Chief Earth Prediction Advancement Division

Motivation

Past 5+ years:

Developing short-range regional models

Present and Future:

Develop short-range regional models + global applications for long-range prediction

- Need to develop a comprehensive physics suite that can be useful for all applications
- Transition suite/schemes/subcomponents/ideas to improve the operational suite

Overview of GSL Physics Development

Component	Scheme	Primary Developers
Land-Surface:	RUC/Snow model	Tanya Smirnova (GSL), Siwei He (GSL)
Surface Layer:	MYNN	Joseph Olson (GSL), Tanya Smirnova (GSL)
PBL:	MYNN-EDMF	Joseph Olson (GSL), Jaymes Kenyon (GSL), Wayne Angevine (CSL), John Brown (GSL)
Convection:	Grell-Freitas	Hannah Vagasky (GSL), Haiqin Li (GSL), Saulo Freitas (NASA), Georg Grell (GSL)
Drag:	GSL Suite	Michael Toy (GSL), Valery Yudin (GSL¹)
Radiation:	ML Emulator	Dave Turner (GSL), Ryan Lagerquist (CIRA)
Microphysics:	Thompson Aero	Greg Thompson (UCAR), John Brown (GSL), Hannah Vagasky (GSL), Tanya Smirnova (GSL)

RUC Land-Surface Model

RUC LSM has been used as the land surface component in RAP/HRRR since 2014

Publication: Smirnova et al. 2016 (MWR)

- Implicit solver for energy and moisture balance
- Two-layer snow model
- Subgrid-scale heterogeneity (snow/landuse)
- Sea-ice model
 - High vertical resolution in soil model

Boundary-Layer Clouds and Turbulence

MYNN Eddy Diffusivity-Mass Flux (EDMF) scheme:

$$\overline{w'\phi} = -\frac{K}{\partial z} + M(\phi_u - \bar{\phi})$$

- o Eddy Diffusivity: turbulent kinetic energy (TKE)-based with option to run at level 2.5, 2.6 or 3.0 closure
- o Mass Flux: Spectral multi-plume model
- Moist-turbulent mixing scheme:
 - o Uses two cloud PDFs to consistently represent subgrid-scale (SGS) clouds (stratus and convective clouds), their impact on turbulent mixing, and the same SGS clouds are coupled to the radiation scheme
- Scale-adaptive
 - Tested and developed down to sub-km scales

Documentation: Olson et al. 2019a (NOAA Technical Memorandum), Olson et al. 2019b (BAMS)

Improved MYNN-EDMF Subgrid Clouds

Average of 12 cases from the 2018 LASSO study, comparing MYNN-EDMF against LES:

MYNN-EDMF reproduces cloud base, cloud top, and liquid water path very well.

Grell-Freitas Convective Parameterization

- GF is scale-aware using Arakawa's 2011 approach
- Three PDFs to characterize the statistically averaged vertical mass flux
- PDFs used to derive entrainment and detrainment rates
- Double moment microphysics tendencies
- Ensemble of closures
- Option to include memory impacts
- Atmospheric composition treatments included

Derived vertical mass flux distribution (left) from PDFs for deep convection compared to observations (from **wind profiler** and **CPOL data**, Kumar et al, 2019). Compare predicted deep convection to observations (dashed red and black).

Publications: Grell/Freitas 2014 (OAR outstanding scientific publication award in 2017), Freitas et al. 2021 (award for "possibly the most significant skill improvement in the history of the GEOS modeling system")

Grell-Freitas Scheme: Ongoing Research

- Improve scale-awareness
- Validate and train closure assumptions
- Evaluate full aerosol interactions
- Use stochastics in the vertical mass flux PDFs
- Implement different chemistry options
- Explore Machine Learning (ML) algorithms
- Incorporate the movement of convective clouds as well as downdraft cold pools

Drag Suite

Flow blocking

Traditionally used components

• Large-scale GWD and flow blocking drag taper off by $\Delta x = 5$ km

New components:

Adapted from

Beljaars et al.

(2004)

• Small-scale GWD and form drag can be used down to $\Delta x = 1 \text{ km}$

Future Work:

 Merge small- and largescale GWD with Fourier (multi-scale/wave) formulation

Small-scale gravity waves

Adapted from
original version
provided by GertJan Steeneveld,
Delft Univ. of Tech

Form Drag

Improvements with GSL Drag Suite

Emulating the Radiation Scheme with ML

Radiation schemes are computationally expensive; called every ~10 time steps

• Developed a Machine Learning (ML) algorithm to mimic the shortwave

parameterization RRTM Shortwave Scheme

Has near perfect reliability and low bias

Is over 1,000 faster than RRTM

- Current / future work:
 - Making emulator vertical grid agnostic
 - Incorporating aerosols and precipitation
 - Building a complementary longwave emulator
- Will test these in the Unified Forecast System
- Paper in review at JTECH

Including Stochastic Physics

Approaches Employed:

- Stochastically Perturbed
 Parameterizations (SPP):
 Perturbations added to LSM,
 PBL, Surface layer, Convection,
 GWD, microphysics, and
 radiation schemes.
- Stochastically Perturbed
 Physical Tendencies (SPPT):
 Perturbation of temperature,
 moisture, and wind tendencies
 from various schemes.

Example of Randomly-Generated Spatial Perturbation Patterns

Summary

- We have expanded our scope from being primarily short-term regional to include all time and spatial scales for all applications.
 - Generalize physical parameterizations
 - Provide improvements for the UFS
- Future development emphasis will be on moist-turbulent physics (PBL, microphysics, and convection):
 - Efforts include machine learning, integrating atmospheric composition, and LES comparisons
- We currently lead cross-institutional model development groups for PBL,
 Convection, and GWD scheme advancement for the UFS.
- We continue to leverage expertise at a variety of institutions (CSL, PSL, GML, NASA, UCAR/NCAR, NRL, DOE, GLERL, ARL).

NOAA Global Systems Laboratory

Atmospheric Composition

Ravan Ahmadov Atmospheric Composition section lead Earth Prediction Advancement Division

Atmospheric Composition Modeling

https://www.globalchange.gov/browse/reports/us-climate-change-science-program-vision-program-and-highlights-scientific-strategic

Our Primary Air Quality Model: WRF-Chem

- WRF-Chem is a coupled meteorology-chemistry model
 - Many different physics/chemistry options from simple to very complex
 - Used worldwide for weather and air quality forecasting
 - Applied for research towards understanding complex processes essential for climate change
- Latest release of V4.3 in April 2021. GSL continues to coordinate the developments through the Github repository, in collaboration with NCAR, DOE, and many other model developers.
- Current use of WRF-Chem for air quality research and forecasting at GSL
 - RAP/HRRR-Smoke and RAP-Chem
 - GEFS-Aerosols (inherited the chem_driver with some simple bulk aerosol modules)
 - Research on impacts of aerosol on weather forecasting (storm scale to S2S)

WRF-Chem paper has been cited **>1600** times. There are more than 284 WRF-Chem related publications since 2020. The WRF-Chem paper was awarded the Haagen-Smit prize in 2017.

The Impacts of Wildland Fire Smoke

Smoke and air quality alerts

Visibility

Smoke impact on weather

Solar energy production

NOAA's Operational RAP/HRRR-Smoke Models

- A smoke tracer is added to the RAP/HRRR weather forecast models (using the WRF-Chem framework)
- The satellite FRP data are used to estimate the fire emissions and heat flux in real time
- The HRRR-Smoke (3km) model is able to capture the mesoscale flows and smoke transport in complex terrain
- Smoke feedbacks on radiation and visibility are also included in these models
- The smoke forecasting capability was transitioned to the operational RAPv5/HRRRv4 systems in 2020

RAP-Smoke (white), 13.5 km resolution HRRR-Smoke model domains (green), 3 km resolution (https://rapidrefresh.noaa.gov/)

Smoke forecasting over the NW US

Numerous wildfires in the western US and Canada during summer, 2018

PM2.5 measurements 8pm PDT, August 19, 2018

https://www.airnowtech.org/navigator/#

Verification of the Surface Visibility Forecasting by HRRR-Smoke over Western US

HRRR-Smoke is the first NWP model in the US to include the interactive aerosols and their impact on radiation and the visibility diagnostics.

CSI - critical success index (%)

The measurements from over 400 weather stations are included in this verification

Experimental Air Quality Forecasting using WRF-Chem

- Daily air quality forecasts over North/Central Americas with a lead time of 48 hours
- COVID-19 adjusted emissions developed by CSL
- The meteorological input data come from the RAP weather forecast model
- The chemical mechanism includes gas and aerosol chemical species, and new SOA treatment
- Online emissions: dust, sea salt, biogenics, and biomass burning
- Photolysis and radiation include aerosol direct effects
- The new chemistry scheme may be a candidate for future implementation within UFS

URL: rapidrefresh.noaa.gov/RAPchem/ Surface ozone forecast (13.5 km resolution) Some parts of the US were impacted by the smoke pollution during summer, 2020.

NOAA's Operational Global GEFS-Aerosols Model

The GOCART aerosol scheme from WRF-Chem was coupled to the global FV3 model. Anthropogenic, dust, fire and sea salt emissions are included in the model.

Saharan dust transport to North America

GEFS-Aerosols vs. NGAC

The bias is calculated taking the difference between the model AOD and MERRA2 analysis. The figures show an average over a five-month period.

Future Plans

- Transition the simple aerosol capability including emissions to the UFS
- Assimilate the satellite AOD data into the UFS models
- Apply machine learning techniques to biomass burning emission forecasting
- Inline coupling of tracer transport and removal within the physics schemes
- Moving more WRF-Chem capabilities into CCPP to be useful for UFS
- Study aerosol-physics interactions using parameterizations with different levels of complexity for applications in next-generation air quality, seasonal and climate prediction models

NOAA Global Systems Laboratory

S2S Prediction and Short-Range Cycling with Coupled Atmosphere-Chemistry-Ocean-Ice-Lake Models

Shan Sun
Chief, Global Earth/Chem Modeling Branch
Earth Prediction Advancement Division

Increasing Frequency of Extreme Weather Events

globalchange.gov

Predictability Across Different Lead Times

Unified Forecast System (UFS) in S2S Prediction

- Madden–Julian Oscillation (MJO), North Atlantic Oscillation (NAO), sudden stratospheric warming (SSW) and land/ice-related processes are among key sources of predictability. Skill is still low in S2S prediction
- GSL works closely with EMC and PSL on various elements of the coupled UFS, including GSL physics package and air-sea interaction, to improve representation of these processes

168 cases in each experiment, with S2S P5 prototype. From Ben Green (GSL) and Eric Sinsky (EMC)

Interactive Aerosols in S2S Prediction

- Studies showed interactive aerosols have the capability of improving S2S prediction
- There is a large uncertainty of aerosol impact on climate
- GSL, with CSL, is adding aerosol prediction capability (using the operational GEFS-Aerosols) to the UFS coupled atmosphere-ocean-ice model for S2S prediction

Ensemble Forecast in S2S Prediction

RMM index skill ACC

- Ensemble forecast targets uncertainties in initial state, physics parameterization, etc.
- GSL ongoing contribution to NOAA real time subseasonal experiment (SubX) used at CPC
- Multi-model Ensemble (MME) has a higher RMM skill than any individual models

Pegion et al. 2019

Atmosphere-Water Interaction via Coupling HRRR & Lakes

Improved short-term weather and lake forecasts!

James/Benjamin/Smirnova (GSL), Anderson (GLERL)

in spring /summer, too

warm in fall

HRRRv3 skin temp

lake model - cycled

problems

HRRRv4 skin temp

hourly - addressed NWS

Atmosphere-Water Interaction via Coupling HRRR & Lakes

Courtesy of Joe Olson

Atmosphere-Water Interaction via Coupling HRRR & National Water Model

HRRR v4 (Dec 2020 @NCEP)

precipitation

Future coupled RRFS+NWM systems will include coupled data assimilation

Summary

Finding potential sources of predictability and representing them well in the model are a key for S2S forecast

- Multi-model ensemble seems more skillful than any individual models
- GSL physics package offers a promising alternative ensemble member

Short-range coupling with models in GLERL/OWP

- Cycling between HRRR and lakes (Great and small) improves for both atmosphere and lakes forecast
- Precipitation from HRRR helps prediction of NOAA National Water Model

Future applications

- WGNE: swapping subgrid scale parameterizations to study aerosol impact in the coupled UFS
- Public health: early warnings on extreme weather episodes including heat waves, drought, flooding, etc.

NOAA Global Systems Laboratory

Georg Grell
Division Chief, Earth Prediction Advancement Division

GSL: Scientific Excellence in Modeling

- We have strong expertise in physics
 - Continue to develop and test state-of-the-art physics parameterizations (scientifically and computationally)
 - State-of-the-art physics may be more expensive : GPU usage? Other work on computational efficiency (collaboration with ATD)
- We have strong expertise in atmospheric composition, continue to accelerate transition of WRF-Chem modules into CCPP and UFS
- We have strong expertise in community support and model coupling continue
 DTC and infrastructure work
- We are leaders within NOAA on fire weather applications continue expanding expertise and application areas

GSL: Our Modeling Vision

Use our expertise and sharpened modeling tools to:

- Improve understanding of processes that are important for weather, air quality, and climate modeling
- Lead research advancements of atmospheric composition modules and physics modules using the UFS framework by engaging the community
- Apply the advancements to our Grand Challenge and improve operational applications on all time and space scales

Thank you!

