NOAA Global Systems Laboratory

Earth System Prediction: Observation Use and Analysis Development for Improved Forecasts

Curtis Alexander
Chief, Assimilation and Verification Innovation Division

Regional Data Assimilation and NWP

Why Convection Allowing Models (CAMs)?

- Captures bulk properties of many hazardous convective weather systems (i.e. rotating updrafts)
- Permits more accurate forecasts of weather conditions in which such hazardous storms may occur
- Employed most often in regional or limited area modeling framework

Why Limited Area Models (LAMs)?

- Reduces the compute expense and complications associated with a global CAM
- Enables rapid data assimilation/cycling with lower lowlatency forecasts than global models
- Emphasizes shorter-range (hours/days) prediction

Regional Modeling Excellence in GSL

Quality of Research

Relevance to Communities

Aviation/Transportation Weather Hazar Tactical and Strategic Planning (0-8 hrs FAA, Airlines, Aviators, NCAR, MIT/LL,

Severe Convective Weather
Warn on Forecast (0-2 hrs)
Severe Weather Watches/Discuss
Severe Convective Outlooks (1-2
SPC, NSSL, NWS

Hydrology and Quantitative
Flash Flood Watches/Meso
National Water Model Forci
Heavy Rain/Snow Outlooks
WPC, OWP, GLERL, PSL,

Renewable Energy

Wind and Solar Power Generation (0-18 Next Day Decision Support (24-48 hrs) Power Authorities, Energy Companies, A

Composition, Air Quality and Health Wildfire Smoke Concentrations (1-2 day IMET, ARL, CSL, NWS

Organizational Performance

From 2012-2020:

Five RAP operational transitions Four HRRR operational transitions

With each transition:
Added DA/model sophistication

Increasing R2O efficiency

Doubling of R2O capacity every two years "GSL's Law"

Data Assimilation: GSL Making Forecasts Better

Seamless collaboration across divisions within GSL, CIs, OAR labs, NWS and external organizations

Doubling of DA staff to ~15 in last five years

World-Class RAP/HRRR → Next Generation RRFS (UFS)

Aviation/Transportation(AWRP)

Hydrology (AQPI, JTTI, DSUP)

Renewable Energy (ASRE)

Health/AQ (JPSS, DSUP)

Oceans/Tropics (GOES, JPSS)

Severe Weather (WoF, VSE)

T20 (UFS R20, JTTI, DSUP)

Observations and Impacts (Eric James)

Analysis Development (Terra Ladwig)

Improved Weather Prediction (Steve Weygandt)

NOAA Global Systems Laboratory

Observations & Their Impacts

Eric James
Senior Research Associate, Assimilation and Verification Innovation Division

Weather Observations for Analysis/Fcst Systems

- Effective rapidly-updating analysis/forecast systems depend critically upon optimal use of observations:
 - Verification
 - Data Assimilation
- Quantifying obs impacts ensures an effective data assimilation system, and identifies opportunities for expansion.

Why run rapidly updating NWP models?

Frequent updates allow:

- Use of the most recent weather observations for improved forecasts.
- Updated information for decision makers.

Why run rapidly updating NWP models?

Why run rapidly updating NWP models?

Without any aircraft reports, 3h forecast errors are just as large as 12h forecast errors!

250hPa wind forecasts: difference in error: 12h fcst err - 3h fcst err

Monitoring and Quality Control of Observations

Observation quality monitoring carried out via realtime **O minus B** statistics (**O**bservation minus **B**ackground)

Differences over time are used to construct dynamic lists for use or rejection of observations, for surface mesonet and aircraft observations.

Example: temperature bias (bs_T) exceeding 2.0 K warrants rejection:

aircraft temperature bias > threshold: tail temp reject obs from this aircraft. Number bias ;tail bs_T Std_T bs_S__cd_S bs_D std_D std_W rms_W bs_RH **FSL MDCRS** Ν errors 0000250 T - - 7103 ----- 1032 0.0 4.5 00000251 - - 6752 ----- 211 0.0 CNJCA117 W - 7124 -----0.0 16.1

Collaborating for Targeted Observations

Field campaigns since 2015 have focused on:

- Wind Energy
- Landfalling
 Pacific storms
- Aviationhazards(convection / icing)
- Severe storms

Observing System Experiments (OSEs)

 RAPv3 data denial experiments carried out for three multi-season 10-day periods. Verification against North American raobs.

Dashed lines: 25% error

RH FORECASTS

reduction

Significance: 1 standard error (67% significance)

James and Benjamin 2017

9 12h forecasts

What was the impact of the COVID-19 decrease in aircraft observations?

 We designed a set of partial data denial experiments which exclude ~80% of aircraft observations, similar to what happened at the peak of

winds (m/s) RMSE

0.1

Wind forecast impacts for winter 0.3 (Feb 2019) 0.2

> raobs all aircraft 80% of aircraft obs

Across seasons / variables, we find 30% higher errors without any aircraft obs and 12% higher errors without 80% of aircraft obs

James et al 2020

Satellite Radiance Direct Broadcast Impacts in RAP

- 4-week retro test 1-28 Sep 2017.
- Hourly verification of brightness temp forecasts against *CrIS* observations reveals significant radiance impacts in RAP for short range forecasts.

Ensemble Forecast Sensitivity to Obs Impacts

- OSEs (data denial experiments) quantify impact of one selected change upon forecast skill; FSOI/EFSOI quantifies impact of all assimilated obs.
- GSL was involved with EFSOI installation in GFSv16, implemented on 22

Mar 2021 (collaboration with *NCEP/EMC*)

- Other ongoing collaborations:
 - GSL represents a unique perspective with rapidly-updating regional obs impacts at *WMO Impacts Workshop* every 4 years.
 - Preliminary coordination meetings with other NOAA labs within the *NOAA QOSAP program* (recommendation C4.6).

NOAA Global Systems Laboratory

Development of Analysis Systems

Terra Ladwig, Chief, Data Assimilation Branch & Research Scientis Assimilation and Verification Innovation Division

- Short-term hazardous weather forecasts rely heavily on the quality of the initial conditions.
- In order to capture high temporal observations rapid assimilation is required, as demonstrated in the previous sub-section.
- GSL has developed and deployed two types of data assimilation techniques.
 - a. Advanced data assimilation, specifically 3DEnVAR and EnSRF
 - b. Non-conventional state or tendency specification

3D Ensemble-Variational Data Assimilation

3DEnVar uses both static and ensemble background error covariances.

Analysis increments for a single observation near a frontal boundary highlight how ensemble flow dependent background error covariances can improve the distribution of observational information.

Figure from Tom Hamil

3D Ensemble-Variational Data Assimilation

- 3DEnVar is very successful for regional hourly data assimilation in RAP/HRRR and has superior skill over purely a 3D-variational analysis (shown below).
- Ensemble background error covariance data from the global system, GDAS, is effectively used with static errors in the RAP 3DEnVar.

3DVar 3DEnVar Difference

Hu, M., et al., 2017.

Assimilation System for Aerosol Analysis and Forecasting

- Satellite based observations of Aerosol Optical Depth (AOD) at 550 nm are assimilated with JEDI software and enable aerosol prediction.
- High AOD indicates large aerosol concentrations that can impact radiation, cloud and rain formation, and air pollution.

Stratiform Cloud-Hydrometeor Assimilation

- Accurate cloud and precipitation initialization is fundamental to short-range prediction systems such as RAP & HRRR.
- The stratiform cloud-hydrometeor assimilation improves retention of observed cloudy and clear 3D volumes in subsequent model forecasts.
- Cloud ceiling and visibility forecasts have more skill due to the cloud assimilation.

Latent-Heating Based Precipitation Assimilation

- Assimilation of precipitation related observations, especially for convection is essential to the success of HRRR/RAP short-term forecasts.

Reflectivity Analysis
Without Latent-Heating With Latent Heating Observations

Convective-Scale Ensemble Based Assimilation

- Ensemble covariances provide temporal and flow dependent information, which is especially important near small scale nonlinear phenomena.
- Convective-scale ensemble assimilation has improved initial conditions for the HRRR and is a foundation for future implementations.

Deterministic HRRRv4

- Initial conditions
- Background Error Covariances

HRRR-Ensemble (HRRRE)

- Storm-Scale Ensemble Forecasts
- Three-Dimensional Real-Time Mesoscale Analysis (RTMA-3D)
 - Background Error Covariances
 - Storm-Scale Analysis Uncertainty

Warn-On-Forecast (WoF) System

- Initial Conditions
- Boundary Conditions

Recommendation C4.2

HRRRDAS Initial Conditions Improves HRRRv4

Case Study 18 UTC 10 August 2020

HRRR_{v3}

Radar observations

- Challenging forecast of very damaging derecho
- HRRRv4
 consistently shows a
 more organized and
 accurate convective
 system due to
 improved initial
 conditions from
 HRRRDAS.
- HRRRDAS uses hourly assimilation cycles to incorporate both conventional and radar observations and the ensemble mean provides convective scale motions and thermodynamics to HRRRv4.

HRRRDAS Initial Conditions Improves HRRRv4

10m Max Wind Speed 10-11 August 2020

SPC Storm Reports

The HRRRv4 wind solutions correctly have:

- stronger overall winds and more coverage further east
- stronger winds starting earlier in the system's life over central lowa
- narrow corridors of very intense winds over eastern lowa

Ensemble Forecast Challenge: Spread vs Error

Ensemble forecasts can provide the range of possibilities that might occur and a measure of uncertainty in a forecast.

HRRR-Ensemble (HRRRE)

Storm-Scale Ensemble Forecasts

Recommendation C4.2

Ensemble Forecast Challenge: Spread vs Error

Ensemble Forecast Challenge: Spread vs Error

Ensemble DA & Forecasting ⇒ Better Probabilities

30-h lead-time: get 1 hit

12-h lead-time: 7 of 9 hits

Radar observations

- Longer forecasts show low likelihood for a large impact event
- Shorter forecasts decreased spread, increased confidence
- HRRRE includes stochastic physics to create spread

NOAA Unified Analysis: RTMA-3D Nowcast/Analysis of Record

GOAL: Record the best estimate of the convective-scale Earth system state.

- Collaborative development with EMC (JTTI & UFS R2O)
- RTMA-3D is not constrained by the need to initialize a forecast (close fit to obs; model behavior not considered)
- RTMA-3D provides 15 min gridded analysis of 3D atmospheric fields with application in multiple areas:
 - General analysis and reanalysis applications
 - Severe weather; targeting replacement of Mesoanalysis
 System (SPC)
 - Aviation parameters; targeting 3D cloud coverage/ceiling grids (AWC)
 - Hydrodynamical modeling input and water in all forms snow cover, soil moisture, lake forecasts, heavy rainfall
 - Model verification 'truth' dataset
- Operational implementation planned for 2024

Recommendation C4.7

Experimental RTMA-3D during Hurricane Laura 27 Aug 2020

GSL is a World Leader in Rapidly Updating DA

 The RTMA-3D analysis system fits obs very closely and is valuable for nowcasting.

- The RTMA-3D analysis system fits obs very closely and is valuable for nowcasting.
- Convective-scale forecasts lead to useful predictions.

- The RTMA-3D analysis system fits obs very closely and is valuable for nowcasting.
- Convective-scale forecasts lead to useful predictions.
- Improved mesoscale initial conditions push forecast value to shorter time scales.

- The RTMA-3D analysis system fits obs very closely and is valuable for nowcasting.
- Convective-scale forecasts lead to useful predictions.
- Improved mesoscale initial conditions push forecast value to shorter time scales.
- Latent-heating radar assimilation push forecast value to nowcasting time scales.

- The RTMA-3D analysis system fits obs very closely and is valuable for nowcasting.
- Convective-scale forecasts lead to useful predictions.
- Improved mesoscale initial conditions push forecast value to shorter time scales.
- Latent-heating radar assimilation push forecast value to nowcasting time scales.
- Convective-scale ensemble with direct reflectivity assimilation provides initial conditions that increase forecast skill across lead-times.

NOAA Global Systems Laboratory

Making Forecasts Better with Data Assimilation Advances

Development of analysis systems has advanced forecast skill

- Built on the success of hybrid variational/ensemble approaches and specification techniques
- Transitioning towards use of only advanced techniques for increased observation information retention
- Expanding ensemble assimilation and forecast development for future success

Extensive experience with conventional, targeted and novel observations

- Applying observations to model data assimilation and verification applications
- Documenting relative impacts on predictive skill
- Using various sensitivity techniques (OSEs, FSOI)

World Leader in R&D of high-resolution rapidly updating models

 Working with many collaborators to improve skill, accumulating innovations for many stakeholders, and finishing with operational transitions

Thank you!

