Verification and Evaluation

Matthew Wandishin
Branch Chief
Forecast Impact and Quality Assessment Services Branch
GSL Verification

Forecast verification at GSL goes back roughly three decades, back when we were known as Forecast Systems Laboratory.
Why Verification?

Users

Verification

Managers

Model Development

Verification

11:00 pm Tue, Mar 09, 2021

2021 Global Systems Laboratory Science Review
What is Verification?

Q: Was this a good forecast?
A1: Wind directions are good but speed is ~5 kts too fast around Chicago and to the southwest.
A2: Check land-surface representation, low-level clouds, fluxes.
A3: Forecast correctly identified west-to-east operations on main runways. So an effective forecast.
A4: Wind speeds were too high and in a steep part of the power curve, resulting in an expectation of nearly twice the level of electricity production as was actually possible. Could lead to expensive purchases on the spot market.
Verification provides feedback about forecasts

- To forecasters--what do we need to improve; how might we go about it? (Jeff Hamilton)

- To users--how does the forecast perform near our decision points; how can we best make use of this product? (Tanya Peevey)

- On economic benefit--can we quantify the benefit to society of forecast improvements, the return on investment? (Dave Turner)
From the Last Review

<table>
<thead>
<tr>
<th>2015 Recommendation</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6.7 Coordinate a community effort on model validation and verification involving GSD with NCEP, DTC, MDL and others</td>
<td>Jeff Hamilton</td>
</tr>
<tr>
<td>D4.2 Begin incorporating social science perspectives and knowledge into decision support activities to help realize Grand Challenge goals</td>
<td>Tanya Peevey</td>
</tr>
<tr>
<td>B6.10 Identify, track and embrace broader metrics of GSD's success even if those metrics are outside of GSD's direct or sole influence, with particular focus on measures of key stakeholder outcomes</td>
<td>Dave Turner</td>
</tr>
</tbody>
</table>
NOAA Global Systems Laboratory

Verification for Model Development

Jeff Hamilton
Associate Scientist, Verification and Assessment Branch
Verification for Model Development

- Requires both subjective and objective verification
- Stages in the research-to-operations (R2O) process
- Typical model development cycle includes
 - “Sandbox” tests; e.g., evaluating change over particular cases
 - Retrospective runs; e.g., multi-week runs to ensure change has no ill effects
 - Experimental runs; e.g., realtime runs to evaluate impacts
 - Operational implementation at National Centers for Environmental Prediction
- Developers need objective verification at each stage
• Hypothesis driven
• Requirements on the GSL model verification tools
 • Quickly compare experimental model and a reference (operational) model in a user-driven web interface
 • Display statistics with a diverse set of plotting options
 • Evaluate against a wide variety of observations
 • Radar reflectivity, precip, surface stations, radiosondes, aircraft, more
 • Point and gridded data; both continuous and discrete (categorial) data
Verification System – Reflectivity Example

Intensity Threshold

<table>
<thead>
<tr>
<th>VIP ** Level</th>
<th>Echo Intensity</th>
<th>Precipitation Intensity</th>
<th>Rainfall Rate (in/hr)</th>
<th>Rainfall Rate (in/hr)</th>
<th>Reflectivity in dBZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weak</td>
<td>Light</td>
<td>Less Than 0.1</td>
<td>Less Than 0.2</td>
<td>0 - 40</td>
</tr>
<tr>
<td>2</td>
<td>Moderate</td>
<td>Moderate</td>
<td>0.1 - 0.5</td>
<td>0.2 - 1.1</td>
<td>31 - 40</td>
</tr>
<tr>
<td>3</td>
<td>Strong</td>
<td>Heavy</td>
<td>0.5 - 1.0</td>
<td>1.1 - 2.2</td>
<td>41 - 45</td>
</tr>
<tr>
<td>4</td>
<td>Very Strong</td>
<td>Very Heavy</td>
<td>1.0 - 2.0</td>
<td>2.2 - 4.5</td>
<td>46 - 50</td>
</tr>
<tr>
<td>5</td>
<td>Intense</td>
<td>Intense</td>
<td>2.0 - 5.0</td>
<td>4.5 - 7.1</td>
<td>51 - 57</td>
</tr>
<tr>
<td>6</td>
<td>Extreme</td>
<td>Extreme</td>
<td>More Than 5.0</td>
<td>More Than 7.1</td>
<td>> 57</td>
</tr>
</tbody>
</table>

Highest precipitation top in area in hundreds of feet MSL (48,000 feet MSL).

Resolution of Verification

- **40 dBZ**
- **30 dBZ**
- **20 dBZ**

Domain

- Northeast
- Southeast
- West
- East

2021 Global Systems Laboratory Science Review
Database-driven architecture
- Metadata is the main driver
- Automated workflow extracts NWP output and observations, matches them, computes aggregated sums of the matched pairs, and stores in database
- User interface provides access to the DB and creates plots desired by the developer
• Curve options dynamically generated
• Multitude of plot types (e.g., time-series, dieoff, etc)
• Multiple data sources per plot
• Numerous options for the user (geophysical variable, statistic, forecast time, date range, time averaging, etc.)
• Match the cases or treat independently
• Trivial to change to other plot types
• For comprehensive overview of GSL system, see Turner et al. 2020
• Collaboration with DTC’s METplus team lead to METexpress (2015 Recommendation B6.7)
Verification System – GUI Example
Verification System – Plot Types examples

- **Vertical Profile**

- **Diurnal Time Series**

- **Contour**

- **Map**
Verification System – R2O Example

- Issue with how clouds were treated at the sub-grid scale, below the scale at which the High-Resolution Rapid Refresh (HRRR) can explicitly resolve them
- Modelers utilized internal solar radiation verification at all stages of development
 - Diagnosis
 - Testing
 - Long-term viability
 - Operational implementation
Aggregated statistics over regions required to keep database size reasonable with rapid response times.

However, these objective metrics are hard to deconvolve to determine what atmospheric (physical) process(es) are the source of model forecast errors.

Process-Oriented Verification is a possible solution - WFIP-2 prototype.
Process-oriented verification places stringent requirements on the Vx system

- Allow the users to select the filtering of the data to help isolate the physical process being investigated via the GUI
- Store orders of magnitude more data - scalable
- Store other variables to use as “discriminators” to filter the dataset
- More efficient database approach to be performant
- Currently prototyping new data model within a No-SQL system
Collaboration with the Unified Forecast System Effort*

- Requires a unified, distributed verification system
- The DTC’s “METplus” software package has been adopted for this purpose
- GSL is incorporating our “lessons learned” into the METplus framework

Advanced and new observation systems

- Satellites, ground-based remote sensors, chemical and aerosol obs, etc
- Machine learning approaches (e.g., “feature-based verification”)
- Object-oriented approach (automated subjective verification)

Cloud resources

- Shared data, storage, and web interface for collaboration (e.g. METexpress)

* 2015 Recommendation B6.7
Aim is to evaluate forecast products in the context of how they are used

- Who is using the forecast?
 - What decisions do they need to make?

Verification must consider the different decisions being made by a multiplicity of users
FAA’s AWRP: “The goal of the research is to transition new or improved weather capabilities…[to] enhance aviation safety and efficiency.”

GSL provides third-party, independent, evaluations of FAA-funded weather products to inform R2O decisions.

Assessments drove decisions to...

- Select the Localized Aviation MOS Product (LAMP) to provide ceiling and visibility data for the Helicopter Medical Emergency Services (HEMS) Tool.
- Delay implementation of the Offshore Precipitation Capability (OPC) to improve product performance.
In the last 5 years, we have conducted numerous AWRP assessments. Users include commercial aviation, general aviation, helicopters & drones.
Impact-Based Verification – Accomplishments

In the last 5 years, we have conducted numerous AWRP assessments. Users include commercial aviation, general aviation, helicopters & drones.
In the last 5 years, we have conducted numerous AWRP assessments. Users include commercial aviation, general aviation, helicopters & drones.

Impact-Based Verification – Accomplishments
In the last 5 years, we have conducted numerous AWRP assessments. Users include commercial aviation, general aviation, helicopters & drones.

- Alaska
- In-flight Icing
- Camera Visibility

- CONUS
- RAP upgrade
- HRRR upgrade
- HEMS Tool: Ceiling and Visibility
- Convective Weather Avoidance Model

Oceanic pseudo-radar analysis
In the last 5 years, we have conducted numerous AWRP assessments. Users include commercial aviation, general aviation, helicopters & drones.

Alaska
- In-flight Icing
- Camera Visibility

CONUS
- RAP upgrade
- HRRR upgrade
- HEMS Tool: Ceiling and Visibility
- Convective Weather Avoidance Model

Oceanic pseudo-radar analysis

World Area Forecast System: Global turbulence and convective forecasts
Assessment Components

Investigate new observations and verification techniques
Discussions with FAA and product developers
Assessment Components

Incorporate ideas from Core R&D; Adjust verification to specifics of user needs
Assessment Components

Share details of approach; Adjust based on stakeholder feedback, where appropriate
Assessment Components

Develop code; Adapt verification tools
Assessment Components

Iterative between analyst and engineers
Assessment Components

Present findings and submit written report
Verification Tools – FAA

Assessment Concepts

Assessment Support

Monitoring
Verification Tools – NWS

CWVS
Convective Weather Verification Service
Impact-based verification of TCF

TFVT
TRACON Gate Forecast Verification Tool
TRACON Gate forecasts for convection at the terminal

CBVT
CWSU Briefing and Verification Tool
Forecaster briefings to TMU for wind shift, C&V events

EVENT
Event-based Verification and Evaluation of NWS Gridded Products Tool
Gridded products for thunderstorm events, terminal and en-route
Impact-Based Verification – Example

- Use of probabilistic forecast information for decisions on snow removal operations at Denver International Airport
- Work done in collaboration with the Boulder Weather Forecast Office and social scientists in Weather Risks and Decisions in Society (WRaDS) program at NCAR
- *2015 recommendation D4.2
Impact-Based Verification – Example

From interviews with the ground operations staff at Denver Int’l Airport

• Interested in event...
 o onset--when do we need to get emergency staff to the airport
 o duration--how long will they be here (do we need to provide food, cots, etc.)
 o intensity--how many staff do we need to bring in

• Need advance planning, not short-term forecasts
 o Forecast information useful in advance of event
 o During the event, rely primarily on observations

• Misses and underforecasts are worse than false alarms and overforecasts
Impact-Based Verification – Example

Present results in context of decisions--onset and cessation of heavy snow

Answers … how does the forecast perform in the context of their decisions and how can they make best use of the product?
Impact-Based Verification – Future Work

- Aviation products switch from (13-km) RAP-based to (3-km) HRRR/RRFS-based
- Probabilistic forecasts of global turbulence and icing
- Fire weather/smoke forecasts
- Verification to inform Impact-based Decision Support Services (IDSS)
- Boundary layer forecasts for unmanned aerial systems (UAS) operations
- Boundary layer forecasts for power generation and transmission
- Space weather in the context of aviation
Economic Impact Studies

Dave Turner
Chief, Verification and Assessment Branch
Developing NWP models is expensive; is the Nation getting a good return on its investment?

EI from some tool can only occur if a decision is changed based upon that tool (e.g., the new forecast changes behavior)

EI is only important for certain weather conditions

EI is usually regionally dependent

Working with CSU Economics Dept. to evaluate EI of the regular updates to our regional model HRRR

Estimating EI of a decision is seldom easy
Economic Impacts – Our Study

- CSU has developed Computable General Equilibrium models to translate weather-based decisions into financial impacts.

- Focused economic analysis on three areas:
 - Morning commuting
 - Specialty crop agriculture
 - Wind energy production

- Financial impacts are rarely symmetric
 - Costs associated with “doing” usually quite different than for “not doing”

Turner et al., *BAMS*, under review
Economic Impacts – Analysis Periods

- Need to use the same weather events for a fair comparison between the baseline and new models
- Focused on overlap periods between (v1 & v2) and (v2 & v3)

<table>
<thead>
<tr>
<th>Version</th>
<th>Primary update from previous version</th>
<th>Overlap period</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 → V2</td>
<td>First inclusion of subgrid-scale clouds, aerosol particles included in cloud and precipitation processes, full-cycling of the land surface model</td>
<td>1 Jun 2015 to 1 Aug 2016</td>
</tr>
<tr>
<td>V2 → V3</td>
<td>Updated turbulence scheme to use non-local mixing, more realistic treatment of subgrid-scale clouds, improved vertical coordinate for simulation above complex terrain, improved data assimilation approach to help retain stratiform clouds</td>
<td>1 July 2017 to 1 June 2018</td>
</tr>
</tbody>
</table>
Economic Impacts – Wind Energy Example

Only focused on “overprediction” errors → largest financial impact

<table>
<thead>
<tr>
<th></th>
<th>Electric</th>
<th>Extra</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Actual”</td>
<td>579,260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on HRRR1</td>
<td>3,328,406</td>
<td>75.6</td>
<td>$59.0M</td>
</tr>
<tr>
<td>Based on HRRR2</td>
<td>1,170,927</td>
<td>16.6</td>
<td></td>
</tr>
</tbody>
</table>

14 month period
Economic Impacts – Wind Energy Example

Only focused on “overprediction” errors → largest financial impact

<table>
<thead>
<tr>
<th>New ”better” than old</th>
<th>Electricity Generated [MW]</th>
<th>Extra costs [$M]</th>
<th>Potential Savings [$M]</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Actual”</td>
<td>579,260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on HRRR1</td>
<td>3,328,406</td>
<td>75.6</td>
<td>$59.0M</td>
</tr>
<tr>
<td>Based on HRRR2</td>
<td>1,170,927</td>
<td>16.6</td>
<td></td>
</tr>
<tr>
<td>“Actual”</td>
<td>873,022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on HRRR2</td>
<td>2,162,395</td>
<td>36.7</td>
<td>$17.4M</td>
</tr>
<tr>
<td>Based on HRRR3</td>
<td>1,547,034</td>
<td>19.3</td>
<td></td>
</tr>
</tbody>
</table>

14 month period

11 month period
• Will evaluate the economic impact in other areas too
 • HRRR version 3 vs version 4 (big improvements in clouds and mixing)
 • Dynamic line rating
 • Aviation forecasts

• Gauging economic impact in disasters (e.g., floods, tornadoes, etc) extremely challenging due to low number of events and assumptions

• Quantifying overall economic impact of a new model version is huge lift (so many different sectors)
Summary: Verification and Evaluation

Matt Wandishin, Tanya Peevey, Jeff Hamilton, and Dave Turner
Verification and Evaluation – Summary

• Developed range of tools for objective NWP model evaluation
 • Goal: to help the model developers improve the models more efficiently
 • Many different statistics over numerous variables and regions
 • Working to identify physical processes that aren’t represented correctly

• Impact-based assessment
 • Goal: demonstrate improved functionality and accuracy of new models for specific, high-visibility stakeholders
 • Evaluate the forecast systems from the stakeholder’s perspective
 • Primarily objective based, but subjective interpretation also

• Economic assessment
 • Using economic models to translate model improvements into savings
Verification and Evaluation – Summary

• Automated verification tools and metrics to quantify model improvements demonstrate performance

• Innovative techniques such as impact-based and process-oriented evaluations demonstrate quality

• Independent model assessments used by NWS and FAA as decision points for transitioning models and tools to operations within NWS demonstrate relevance

• Significant economic benefits in several sectors demonstrate quality and relevance of the HRRR model to society
Thank you!